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Thermally-induced extrudate swell 
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I n  many polymer processing applications, the generation of heat by viscous losses in 
the flowing molten polymer is highly significant. The heating reduces the viscosity 
of the melt sharply and the flow patterns are different from the isothermal case. I n  
this paper, a finite element scheme based on the Galerkin method is developed and is 
used to explore the effects of thermally induced property changes in extrusion. 

I n  the program we solve simultaneously for the flow and temperature fields a t  each 
iteration. To check the program for accuracy and correctness, some simple problems 
were first attempted. A solution for viscous heating in Poiseuille flow was used to 
check the variable-viscosity part of the program. The crucial convection (‘radiation ’) 
boundary condition was checked using the solution for cooling of a moving rod. 
Finally, the swelling of extruded jets with self-heating was investigated. A new 
phenomenon, thermal extrudate swell, was thereby discovered. We have found 
extrudate expansions up to 70 yo of the die diameter in a Newtonian fluid with thermal 
properties similar to  those of low density polyethylene. It is clear that  this phenomenon 
will affect many experimental interpretations of extrudate swelling. 

1. Introduction 
When a viscous fluid is extruded through a die into the atmosphere a t  sufficiently 

low Reynolds numbers, i t  is observed that far downstream the extrudate from the 
die forms a parallel cylinder whose diameter exceeds that of the die. This phenomenon 
is known as die-swell or extrudate swell. For a creeping Newtonian jet without surface 
tension or gravity forces, the expansion is about 13% (Nickell, Tanner & Caswell 
1974). The phenomenon is much more marked with non-Newtonian fluids where 
extrudates can swell up to several times the die diameter. It is usual to attribute this 
large expansion to fluid visco-elasticity (Tanner 1970) and it is the purpose of this 
paper to show that this view must be applied cautiously in the most common case of 
practical interest where molten hot plastic is the extrudate. I n  such a fluid, Newtonian 
or otherwise, the variation of viscosity with temperature is an important practical 
fact (Pearson 19771, and in the present paper we investigate the flow of a Newtonian 
fluid having a temperature-dependent viscosity in extrusion problems. 

This problem does not lend itself to ready analytical solution. These and similar 
complex flow problems with free surfaces and mixed-boundary conditions appear to  
require numerical treatment. Here, a finite-element scheme based on the Galerkin 
discretization procedure is developed to investigate axisymmetric flow problems of 
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incompressible, Newtonian, non-isothermal fluids. The full Navier-Stokes and energy 
equations are used including the nonlinear convective and viscous dissipation terms; 
the coupling is through the temperature dependent viscosity. The isothermal, New- 
tonian die-swell problem was treated by Nickell et al. (1974) using a similar finite- 
element scheme. The swelling ratio of about 13 yo was in substantial agreement with 
experiments made a t  both small finite Reynolds numbers and small ratios of surface 
tension to viscous forces (Goren & Wronski 1966). The energy equation was included 
in the works of Tay & de Vahl Davis (1971), Laskaris (1975) and Gartling (1977), 
amongst others. While the first of these papers used variational methods, weighted 
residual methods, mainly the Galerkin method, were used in the other works. How- 
ever, none of these authors dealt with free surface problems; viscous dissipation and 
convective boundary conditions were also omitted. Thus, this work concentrates on 
implementing a finite-element scheme incorporating these features, which are necessary 
for the study of extruded non-isothermal jets. 

2. The finite-element scheme 

fluid flow in component form are: 
The governing equations for an incompressible, Newtonian, non-isothermal steady 

avf/ax, = 0 continuity; (1) 

- + p  8% ( f i - v . -  %) = 0 momentum; 
ax, 

a2T aT 
k- - p c v i z  +p@ = o energy. 

ax, axj i 
(3) 

Here c, k, p, p are respectively the fluid specific heat capacity, thermal conductivity, 
viscosity, and density and @ is the viscous dissipation function given by 

The viscous stress tii of a Newtonian fluid is 

The symbols vi, p ,  fi and T have their normal meanings of the velocity component 
in the xi direction, pressure, the body force component in the xi direction, and tem- 
perature, respectively. I n  the present paper, all material parameters (except the 
viscosity) are held constant. 

The boundary surface S is assumed to be 

s = S,+S, = S,+S,, ( 6 )  

where the velocity is given on S,, stresses on S,, temperature on S ,  and temperature 
gradient normal to the boundary surface (hence heat flux) on S,. On S,, we assume 
that the boundary force 7i is given as 

ti3n, = ri, (7) 
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where ni is the outward pointing normal unit vector on the boundary surface. I n  the 
present paper, the ri are always zero. On S,, the convection boundary condition is 
given as aT h 

-ni = - - (T-Tm) 
axi k 

where h is the local heat transfer coefficient and T, is the surrounding temperature; 
y and s are thus simply - h / k  and hT,/k respectively. Along the boundary surface, 
ri, q and s can vary and are supposed to be known apriori. 

The Galerkin method is used to  discretize the problem. The governing equations 
(1)-(3) and their boundary conditions (7)-(8) can be written in a general vector form as 

Ag = B, (9) 
where A is an operator on the solution vector g defined by 

Aside from the extra variable T and the extra energy equation, the Galerkin 
treatment is identical to that described for isothermal flows previously (Nickell et al. 
1974; Tanner, Nickell &, Bilger 1975). It will, therefore, be only briefly mentioned 
here. 

and $i be respectively the 
radial (or y )  component of velocity, the axial (or 2 )  component of velocity, pressure 
and temperature a t  node i ;  the basic finite element used is a 24 degree-of-freedom 
quadrilateral composed of four 18 degree-of-freedom triangular sub-elements as shown 
in figures 1 (a )  and 1 ( b ) .  The computer program first assembles the four triangular 
sub-elements into a quadrilateral element, then assembles the n quadrilateral elements 
covering the complete flow field and solves for nodal variables. The solution of the 
previous iteration is used in the next cycle for an Oseen-linearization of the nonlinear 
terms in the system. 

Pressure p and temperature T are linearly interpolated while the two components 
u and w are quadratically interpolated; in this way a consistent linear approximation 
is obtained for the stress field. The interpolation functions are expressed in area 
co-ordinates ti defined in the usual way and described in previous papers (Nickell 
et al. 1974; Tanner et al. 1975). 

I n  an axisymmetric (or plane) system, we let Qi, di, 

If we define a vector composed of the functions to be interpolated as 

v =  I;] 
and arrange the vector 8 composed of nodal point unknowns as 

then the interpolation polynomial can be written as 

v = a(<)?, 

where a(<) is a [4 x 181 matrix of interpolation coefficients. 
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FIGURE 1. The program uses (a) a 24 degree-of-freedom quadrilateral element 
composed of four 18 degree-of-freedom triangular subelements ( b ) .  

Similarly, we define a vector composed of derivatives of the velocity field and the 
pressure as 

which can be written as 

where P(6) is a [6 x 181 matrix of interpolation coefficients. 
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The constitutive equation for a Newtonian fluid can then be written as 

t = D . e ,  
where D is the constitutive matrix 

r2: 2p O 0 O O 0 - l l  0 0 - 1  

D = [  0 0  x x 2i ; ; -!I' 
- 1  - 1  -1 0 0 0 

t is a column vector {tW t,, t,, t,., t,., 01, p is the viscosity and 0 = V . v. 

as 
The nonlinear convective terms are approximated by an Oseen-type approximation 

where u* and w* are the current best estimates of u and w, from the previous iteration. 
We write the force boundary condition and body force in vector form as 

Then contracting the momentum equation with a virtual field aSv and integrating 
over space we find (Nickel1 et al. 1974) 

- s, S g t P i D P 9 d ~ + ~ ~ ~ S i - l ~ t y d B + S V S O L . L f d T I - S y s e t a t ~ P 0  d B  = 0, (18) 

where 
pu* 0 0 pw* 0 
0 0 pw" 0 

0 0 .  
pu* 0 0  "I .=[ 0 0 0  0 

0 0 0  0 

We treat the energy equation (3) similarly; we multiply by an interpolation function 
and use the divergence theorem, taking account of the boundary condition (8) on 
part of the boundary of the fluid. We can write the components of the temperature 
gradient and the temperature in the form 

T = Y.8, 
9 
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where Z and Y are simple matrices, and replace DTIDt and the dissipation function 
by an Oseen-type approximation as 

+ U*C,$+W *C, 8, (21) 

where C, and C, are also simple matrices. 

we obtain 
Then contracting the energy equation with a virtual field and integrating over V 

66tYte*tEf36d V - 6Gt Yt(u*C, + w *C,) G d V = 0, (22) +Jv P C  

where e* is given by (15) (evaluated a t  the previous interation) and E is given by 

2 0 0 0 0 0  
0 2 0 0 0 0  

E = [ ;  i i ; ; j. 
Now, by summing (18) and (22) and eliminating the vector of arbitrary constants 

aft,  the stiffness-force equation for a triangular sub-element can be written as 

where 
K.8 = F, (24) 

and 

atdf3d V -Iv ZtZ d V +Iv YtY dS 
C C 

K =  ptDpdV+ 
J V  

Yte * tEp  d V - Yt(u*C, + w *C,) d V (25) 
J V  

In the evaluation of the volume integrals in (25) and (26) a 7-point Gaussian integration 
scheme was used (Nickel1 et al. 1974); the surface integrals were evaluated analytically. 

The matrix K is not symmetric and at each iteration the unsymmetric system was 
solved; it has not been found possible to secure convergence with some of the schemes 
designed to use a symmetric matrix mentioned by Nickel1 et al. (1974). The updating 
of the free surface is also performed by the method described by Tanner et al. (1975). 

3. Solution to some simple problems 
The program was checked for correct operation and accuracy by solving problems 

with known exact solutions. The first check was Poiseuille flow with heat transfer, 
and a viscosity of the form 

p = poexp -aT, (27) 
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FIGURE 2. Temperature [equation (29)] and velocity [equation (28)] profiles for Poiseuille problem 
with self-heating. -, exact solutions; , finite-element solution with 4 elements in radial and 
axial directions; ---, velocity profile for constant viscosity and same discharge; x - x , tem- 
perature profile for a = 0 (constant viscosity). 

where p, and a are constants. The analytical solution of this problem given by Kearsley 
(1962) is 

and T = a-l In [ 3 2 y / ( K ~ * ~  + Y ) ~ ] ,  (29) 

where P, is the pressure gradient, R the tube radius, k the thermal conductivity, 
K = aR4Pf/4p,k the non-dimensional measure of viscous heating, r* = r/R, a 
dimensionless radial co-ordinate, and y EE 16 - K + 4( 16 - 2K)*. If K = 0, we revert to 
the parabolic Poiseuille profile for w and the quartic profile for T, which are plotted 
in figure 2. 

The numerical iteration was started from the Poiseuille solution (a = 0)  and con- 
verged in 4 iterations. Figure 2 shows a satisfactory comparison between exact 

9-2 
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FIGURE 3. Test problem: the cooling of a moving solid rod with both fixed temperature 
(ends) and convective boundary conditioiis (curved surface). 

solutions and finite element solutions for K = 3.5. This comparison of the axial 
velocity profiles and temperature profiles, when using 4 elements in both the radial 
and axial directions showed errors of less than 0.8 % and 1.2 % in the axial velocity 
and temperature fields respectively. 

In the above problem, the temperature of the tube wall is maintained constant, and 
the heat transfer boundary condition (8) does not operate. To test this part of the 
program, we considered the problem of a moving cylindrical rod cooled by convection. 
The problem is sketched in figure 3 and the temperature field admits an exact solution 
in terms of J,,, the zero-order Bessel function. 

Suppose the cylindrical rod of radius a and length b moves axially at  a constant 
velocity w = wo. At z = 0, T = To and a t  z = b,  T is zero. The rod is cooled by convection 
on r = a.  Thus, the boundary conditions are: 

(a)  T = To on z = 0 ;  
( b )  T = 0 on z = b ;  
( c )  on the surface r = a, 

8T - h  - = - (T - Tm), 
ar k 

here we take T, = 0 (thus h is the surface heat transfer coefficient and k is the thermal 
conductivity of the rod); 

( d )  along the axis of symmetry r = 0 we have aT/ar = 0 ;  
( e )  w = wo, u = 0 on all rod boundaries, this defines the rigid body motion. 

It may easily be shown (Phuoc 1978) that the temperature T is given by 

where an are the roots of 

and /3 = pcwo/2k. Here p is the material density and c is the specific heat. As a test 
problem we used ha/k (a Nusselt number) = 2 ,  /3 = 0.5 inverse length units, b = 3 
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FIGURE 4. Temperature profiles in a moving rod cooled by convection. ---, exact solution, first 
six terms of (31) ;  , finite-element solution (7  x 8 elements); ---, estimated solution - first six 
terms of (31) not sufficiently accurate in this region. 

length units, a = 1 length unit, and To = 4 temperature units. Six terms of the series 
were used to evaluate (31) and in some regions this is not sufficient (dotted lines in 
figure 4). The comparison in figure 4 was considered to be a satisfactory approximation 
to  the exact solution. 

Several other problems with variable viscosity were solved (Phuoc 1978) including 
the cooling of a two-dimensional slab and the Graetz problem (flow in a circular tube 
with a step change in wall temperature a t  a given plane). In all cases the numerical 
and analytical solutions were in satisfactory agreement. 

4. Non-isothermal extrusion 

5-8) where the viscosity p is assumed to vary with temperature according to 
We now consider the extrusion of an incompressible Newtonian fluid (see figures 

p = ,E exp { - a(T - Tw)}. (33) 

A sketch of the problem is shown in figure 5. The basic scaling parameters are: tube 

radius R, a-v-erage fluid velocity in pipe a, pipe wall temperature T,, ambient tem- 
perature T,, fluid viscosity a t  T,, p. 
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FIGURE 5. Boundary conditions for extrudate swell problem. 

Wall: u* = w* = 0; T* = 0 Free surface: t,t,,, = t& = 0; 

t " - S  

- aT* = q * ~ *  + s* 
an* 

//''/'//'/ ///''/'//V 

- 
Inlet: u* = 0; -. 

/ w* as in (28); Far downstream: u* = 0; 
T* as in (29) t&. = t&. = 0 

-+ ~ . _ _ _ _ . ~ .  

We may then define the non-dimensional parameters: 

u* = u/@; w* = w/%; r* = r / R ;  z* = Z/R;  

Then the non-dimensional continuity, momentum and energy equations in an axi- 
symmetric co-ordinate system are written in terms of these dimensionless variables. 
Note that p* is a Reynolds number; a*, k* and c* are also dimensionless parameters 
characterizing the problem. An additional parameter (gravity, air drag and surface 
tension are ignored here) which also influences the solution is the convective heat 
transfer coefficient for the jet, through the Nusselt number hR/L. Here we shall not 
attempt to compute all the possibilities among this field of parameters. Instead we 
shall consider a Newtonian fluid with properties corresponding to those of low-density 
polyethylene, and consider the extrusion through a long die of radius 1 mm. Thus we 
take (Phuoc 1978) 

R = 1 mm, p = 0.92 mg/mm3, k = 0.335 W/m OK, c = 2.3 kJ/kg O K .  

The wall and ambient temperatures are chosen to be T, = 150"C, T, = 25°C. 
Around a temperature of 150 "C, the viscosity can be approximated by 

p, = 9.306 x 1ODe--O.*342(T) mg mm-1 s-1, 

The viscosity a t  T, = 150 "C is ,ii = 5.5 x lo7 mg mm-ls-l which gives the non- 
dimensional viscosity as 

With W varying between 1 mm s-1 and 30 mm s-1 the Peclet number varies between 
6-3 and 190 and the Reynolds number is less than 

The non-dimensional thermal boundary condition on the free surface is given by 

aT*/an* = p*T*+s* 

(34) p* = e-4.276TS. 

withs* = q* = - (h/k)  R;  n is the outward-pointing normal vector to the free surface. 
Acierno et al. (1971) measured (h/k)  R for polyethylene and found that very close 



Thermally-induced extrudate swell 263 

3.2 

2.4 

W* 

2 .o 

1.6 

1.2 

0.8 

0.4 

0 0.2 0.4 0.6 0.8 1 .o 
r* 

FIGURE 6. Dimensionless input velocity profiles for various flow rates. -, W = 1 mms-'; 
_ _ _  , G =  1OmmS-1;----,W= 20mms-1; - - - - - ,8= 30mms-'. 

to the spinneret and in still air, ( h l k )  R is constant and equal to 0-72. We adopt this 
value as an approximation to our heat transfer coefficient in this example. Thus 

s*= q * -  - -0.72. 

The boundary conditions for the extrusion problem are then as follows (figure 5 ) .  
(a)  At inlet, i.e. along z* = - 2 ,  the fully-developed velocity and temperature 

profiles of a viscously heated fluid as given by Kearsley (1962) are prescribed; thus we 
use (28) and (29) as input profiles. These are shown in figures 6 and 7 in dimensionless 
form. 

( b )  Along the pipe wall, i.e. r* = 1 (0 < z * ) ,  we prescribe the no-slip boundary 
condition u* = w* = 0 and the isothermal wall condition T* = 0 (corresponding to 
T = Tu, = 150°C). 

The non-dimensional flow rate is given by 
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FIGURE 7. Dimensionless input temperatures profiles for various flow rates. -, Tij = 1 mm s-l; - , - = 5 mms-1; ---, G = 20mms-1; ---, w = 2Omms-1; - - - - -, G = 30mms-'. -..- 

(c) Along the free surface we have no stresses, tz,,, = tzSs8 = 0, and the convection 
boundary condition, aT*/an* = - 0.72T* - 0.72. 

( d )  Far downstream (where z* is sufficiently large so that there is no further change 
in the extrudate diameter), we impose zero radial velocity and axial stress, u* = 0, 
t$,. = 0. No thermal boundary condition is imposed on this end, thus the solution 
attempts to make aT/& zero here. This is discussed further below. 

(e) Along the centre-line, i.e. r* = 0,  we impose no radial velocity and no shear stress, 
u* = 0, t,*.,. = 0 ,  and an axis of symmetry boundary condition for temperature, 

With this set of boundary conditions and the element pattern shown in figure 8, 
a series of five computer runs was made with 'iij = 1 mms-1, 5mms-l, lOmms-', 

aT */ar = 0. 
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FIGURE 8. Element pattern used for solution of extrusion problem. 

20 mm s-1 and 30 mm s-1. About 20 iterations were needed for convergence at the 
largest speed (PBclet number of about 190). 

An expansion ratio can be defined by 

where rZax is the filament radius far downstream. Figure 9 shows that E increases from 
13.4 % to 69.4 % as W increases from 1 mm s-1 to 30 mm s-l. It can also be seen that 
as W --f 0, the expansion ratio c tends to  about 13 yo in agreement with established data 
(Nickel1 et al. 1974; Goren & Wronski 1966). The upper limit of W = 30mms-' was 
set by considering the maximum temperature that polyethylene may experience 
without oxidation; this velocity corresponds to a maximum temperature of about 
224 "C, which is close to the 230 "C oxidation temperature of polyethylene. However, 
there appears to be no natural limit to the thermal swelling at this point and it simply 
is the point a t  which computing was stopped. The PBclet number varies linearly with 
W so that 

pcZR 
k 

Pe = - = 6.324W (W in mm s-l). 

The PBclet number assumes values up to about 190 for W = 30 mm s-l; the Reynolds 
number Re is 2p@R,/,u _N 0.3 x lo-%, and is always negligible here. 

Figures 10-12 show the contours of stream function, pressure and temperature for 
the W = 30 mm s-l case. The velocity and stress contours are similar to those previously 
published (Nickel1 et al. 1974) and are not repeated here. 

Figure 13 shows the temperature contours for the slowest jet (W = 1 mms-l,or 
PBclet number of 6.3). The arbitrary imposition of the free zero-gradient boundary 
condition on the downstream face (z* = 3) needs some discussion. Because the cooling 
of the filament is so slow, it is not practical to solve the problem with a jet long enough 
to reach ambient temperature, a t  least a t  higher extrusion rates. Actually, the problem 
for large z becomes identical to the cooling of a solid rod, as all mechanical rearrange- 
ments seem to be complete within about 1.2 jet radii from the exit. We can use the 
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FIGURE 9. Expansion ratio E as a function of mean velocity W. 
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FIGURE 10. Streamlines for G = 30 mm s-l. 

type of solid-rod analysis that leads to equation (31) and note that the solution takes 
the form 

T = C J((a,r*){A,expz*[Pe+ ( P e 2 + a g ) * ] + B n e x p z * [ P e - ( P e 2 + a ~ ) ~ ] }  (36) 
ca 

n= 1 

with P e  = pcGR/k the PBclet number. 
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FIGURE 1 1. Dimensionless pressure ( p  *) contours for 'iij = 30 mm s-l. Note that at the exit plane, 
on the centre-line, there is a positive pressure. Values of p* for the contours are: (1) - 1.11; (2) 

3.70; (13) 4.13; (14) 4.57; (15) 5.01. 
-0.67; (3) -0.27; (4) 0.20; (5) 0.64; (6) 1.07; (7) 1.51; (8) 1.95; (9) 2.39; (10) 2.82; (11) 3.26; (12) 
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FIGURE 12. Dimensionless temperature (T*)  contours for 5 = 30mms-l. Contour (1) is for 
T* = 0.020, contour (15) is for T * = 0.570, and the contour interval is 0.0393. 

-2.00 -1.20 -0.40 0.40 1.20 2.00 2.80 
z* 

FIGURE 13. Dimensionless temperature (T*)  contours for 5 = 1 mm s-1. Contour ( 1 )  
is for T* = - 0.526, contour (15) is for - 0.016 and the contour interval is 0.0365. 
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The coefficients A ,  and B, should be evaluated from the conditions a t  z* = 0 and 
z* = 3. In the present case we find that the A ,  are of order (or less) times the 
B,, (assuming the lowest Pe is 6.3) and hence the B, are determined essentially entirely 
by the upstream conditions. The small ‘kink ’ in a thin boundary layer which would 
be necessary to achieve the zero gradient condition is not visible with the mesh used. 
Hence, a t  the P6clet numbers considered, the present solution is accurate despite the 
arbitrary boundary condition assumption at the exit plane; the implied zero-gradient 
temperature boundary condition at  2 * = 3 is ignored. 

5. Discussion 
The main results achieved here are the creation of a program that can handle 

coupled fluid mechanics and heat transfer problems in highly viscous liquids and the 
discovery of the thermal extrudate-swelling phenomenon. The computational scheme 
used here, where the temperature is solved for simultaneously with the mechanical 
variables, is not strictly necessary for the forced convection problems tackled so far; 
for example Gartling (1977) solves alternately for these variables. We have in mind 
the use of this type of scheme for future solutions of natural convection problems, 
however, and in this direction the present program will be useful’. It would also be 
interesting to compare the speed of the two types of scheme. This has not been done 
so far. 

Regarding the thermal swelling phenomenon, one can consider a dimensional 
analysis of the variables in the problem. We can write the expansion 8 as 

(37) E = 45, R, P ,  ru, a, P C ,  k ,  h, T, - Tm). 
Here we regard T, as a reference for temperature level, and hence only T, - T, enters 
the problem. From the above quantities we can form 5 dimensionless groups so that 

In  the solid rod problem, equation (31), we found that pc5Rlk and hRlk occur 
separately, hence we have not combined them into a Stanton number, nor have we 
attempted to combine the other groups. Of these, the first (Reynolds) number is so 
small as to be irrelevant in the present investigation.The Nusselt number hR/k controls 
the rate of cooling of the extrudate. The last group is a temperature ratio comparing 
the temperature rise from the viscous effects to the temperature drop between the 
wall and the ambient temperature; it  is also important in determining how fast the 
extrudate cools. The group containing a has been termed the Nahme-Griffith number 
(Pearson 1977). We give this group the symbol Na.  

It has not been possible to explore the effects of these parameters fully but we may 
look for some limiting cases when the polymer is a good and a bad conductor of heat 
respectively. In the first case k -j. co and the fluid temperature will differ negligibly 
from the tube temperature everywhere; thus we return to the Newtonian swelling 
ratio. When k is small, the heat produced at a particle is not much diffused. In this 
case the convection boundary condition is not important (Nu + co) and the surround- 
ings temperature T, is also not an important parameter in the problem. Hence we 
find 

E = s(ajFZ2/k). (39) 
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FIGURE 14. (a) Swelling e as a function of the Nahme-Griffith number ( N a ) .  ( b )  Swelling e tm a 
function of a (TmX-Tw), where Tmm is the maximum temperature on the centre-line and T, is 
the die wall temperature. 

We believe the computations at the higher extension rates are close to this condition; 
heat conduction is unimportant except as a mechanism for setting up the initial 
temperature profile at  the exit plane and enabling the final cooling of the rod to take 
place. One can look at  figure 12 to see this and also to see that the surface heat loss 
is quite unimportant close to the exit in this case; hence the ambient temperature 
T, is also a relatively unimportant parameter in this calculation. The PBclet number 
is large ( -  190) and thus we are in the large Pe r4gime where heat diffusion is not 
important (except for the setting up of the initial profile). We plot the results in the 
form (39) in figure 14(a). At the highest rates we have, approximately 

E = 0.129+0.112Na (Nu a 1). (40) 
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Diffusion is expected to reduce e by reducing temperature differences in the extrudate; 
hence (40 )  appears to be a useful bound to the problem. 

We note further that since the main function of the dissipation is to produce the 
initial temperature differential in the extrudate, we expect that the results obtained 
for swelling due to any method of producing a similar temperature distribution near 
the exit will be both qualitatively and quantitatively similar to the present results. 
Thus we can expect that shooting hot fluid into a cold, fairly short die will produce 
similar effects to those computed. To help with applications such as these, we may note 
from equation (29 )  that the maximum temperature on the axis (Tmax) when the 
viscosity is constant a t  ,Z, is given by 

T,,, = T, +,ii-W2/IC. ( 4 1 )  

Thus T,,, - T, is closely related to the parameter jiTE2/k. Hence, as a rough approxi- 
mation, we can write equation (41) in the more useful form 

e = a + ba( T,,, - TJ.  

Figure 14 (b)  shows this curve, and suggests that for moderate heating 

E = 0~129+0~165a(T,,,- T,) if a(T,,,- T , )  < 1.6. ( 4 2 )  

Since the Nahme-Griffith numbers reached in practical extrusion will often be of the 
order of these considered here, we recommend that this factor be taken into account 
when attempting to reconcile experiments with theories of extrusion. We are not 
aware of any experiments that could be compared to our results, but we feel that these 
would be of interest. 

Finally, the problem of explaining these results has been undertaken in a new study 
(Tanner 1980). The theory of extrudate swell put forward there is based on the idea 
that the outer portion of the jet is being stretched and is in a state of tension. To 
preserve axial force equilibrium, it follows that the core of the extrudate must be in 
compression. When the viscosity of the outer layers is larger than that of the inner 
layers, as it is here, a small rate of outer layer extension is sufficient to balance core 
compression. Consideration of the mass balance over the jet then yields the result 
that the extrudate must expand. This theory agrees well with equation ( 4 2 ) .  

The authors are grateful to the Australian Research Grants Commission and to 
the University of Sydney for supporting this project. 
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